Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex.
نویسندگان
چکیده
Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2-Mob1, and Dbf2(S374A/T544A)-Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.
منابع مشابه
Order of function of the budding-yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5
The Dbf2 protein kinase functions as part of the mitotic-exit network (MEN), which controls the inactivation of the Cdc28-Clb2 kinase in late mitosis [1]. The MEN includes the Tem1 GTP binding protein; the kinases Cdc15 and Cdc5; Mob1, a protein of unknown function; and the phosphatase Cdc14 [2]. Here we have used Dbf2 kinase activity to investigate the regulation and order of function of the M...
متن کاملMutual regulation of cyclin-dependent kinase and the mitotic exit network
The mitotic exit network (MEN) is a spindle pole body (SPB)-associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1-Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In ...
متن کاملDBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein.
The DBF2 gene of the budding yeast Saccharomyces cerevisiae encodes a cell cycle-regulated protein kinase that plays an important role in the telophase/G1 transition. As a component of the multisubunit CCR4 transcriptional complex, DBF2 is also involved in the regulation of gene expression. We have found that MOB1, an essential protein required for a late mitotic event in the cell cycle, geneti...
متن کاملRegulation of the localization of Dbf2 and mob1 during cell division of saccharomyces cerevisiae.
The mitotic exit network (MEN) governs Cdk inactivation. In budding yeast, MEN consists of the protein phosphatase Cdc14, the ras-like GTPase Tem1, protein kinases Cdc15, Cdc5, Dbf2 and Dbf2-binding protein Mob1. Tem1, Dbf2, Cdc5 and Cdc15 have been reported to be localized at the spindle pole body (SPB). Here we report changes of the localization of Dbf2 and Mob1 during cell division. Dbf2 and...
متن کاملThe mitotic exit network
What is it? The mitotic exit network – commonly known by the acronym MEN — is a signal transduction cascade which triggers the exit of mitosis. The MEN has been characterized in the budding yeast Saccharomyces cerevisiae, and the protein names below refer to components from this species, though many are conserved in vertebrates. The main switch of this cascade is the small G protein Tem1 and it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 13 شماره
صفحات -
تاریخ انتشار 2001